WRITTEN HOMEWORK \#1, DUE APRIL 9, 2010

Unless explicitly noted, you are to justify all of your responses with work and/or proofs. In this assignment, you will probably want to use the $\operatorname{Euler} \varphi$ function, where $\varphi(n)$ equals the number of integers between 1 and n, inclusive, which are relatively prime to n. For example, $\varphi(2)=1, \varphi(4)=2, \varphi(5)=4$.
(1) (a) Let $G=\mathbb{Z} / n \mathbb{Z}$. We know that $\overline{1}$ (equivalently, $1 \bmod n$) generates the additive group G. What is the order of $k \bmod n$, in terms of k and n ?
(b) If $g \in G$, we know that $|g|$ divides $|G|$. Therefore, if $m \nmid n$, then there are no elements of order m in $\mathbb{Z} / n \mathbb{Z}$. Suppose instead that $m \mid n$. How many elements of $\mathbb{Z} / n \mathbb{Z}$ have order m ?
(2) (a) Let $\left(g_{1}, g_{2}\right) \in G_{1} \oplus G_{2}$, where $\left|g_{1}\right|=n_{1},\left|g_{2}\right|=n_{2}$. What is the order of $\left(g_{1}, g_{2}\right)$? (b) Use your answer from part (a) to determine the number of elements of each order in $\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.
(3) (a) Show that two isomorphic finite groups have the same number of elements of each order.
(b) With this in mind, show that $\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and $\mathbb{Z} / 8 \mathbb{Z}$ are not isomorphic.
(c) More generally, give necessary and sufficient conditions on m, n for when $\mathbb{Z} / n \mathbb{Z} \oplus$ $\mathbb{Z} / m \mathbb{Z}$ is isomorphic to $\mathbb{Z} / m n \mathbb{Z}$.
(4) Let $f(x)$ be a polynomial with complex coefficients, and let α be a root of $f(x)$. Show that α has multiplicity greater than or equal to 2 if and only if α is also a root of $f^{\prime}(x)$. You may assume that the familiar rules of differentiation still apply for polynomials with complex coefficients.
(5) Let p be a prime. Show that there are at most two solutions $\bmod p$ to $x^{2} \equiv a$ $\bmod p$. Show that this is not true in general for $x^{2} \equiv a \bmod m$, where m may not be prime, by exhibiting an explicit counterexample.
(6) Exercise A1 from Appendix A of the text.
(7) Exercise A4 from Appendix A of the text.
(8) Exercise A5 from Appendix A of the text.

